Министерство науки и высшего образования Российской Федерации ФГБОУ ВО «Удмуртский государственный университет» Институт нефти и газа им. М.С. Гуцериева Кафедра теплоэнергетики

«Энергия инноваций в инженерном образовании-2022»

Влияние азотирования поверхности хромсодержащих сталей на их коррозионную стойкость при различных характеристиках образовавшихся пленок

К.т.н., доцент Борисова Елена Михайловна

Хромсодержащие стали

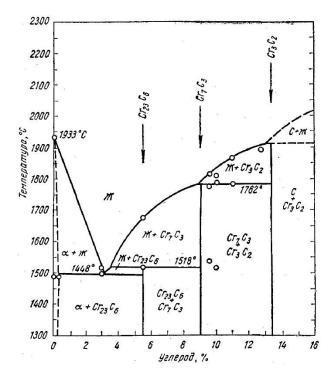
Легированные стали – сплавы на основе железа, в химический состав которых специально введены легирующие элементы, обеспечивающие при определенных способах производства и обработки требуемую структуру и свойства.

- хромистые
- хромоникелевые
- хромомарганцевые
- хромомарганцево никелевые

сортовой и листовой прокат; поковки; горячекатаные холоднокатаные трубы; литые детали и т.д.


И

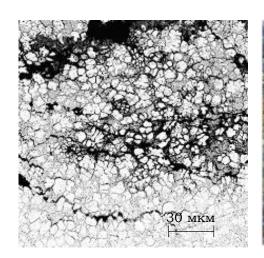
Хромсодержащие стали



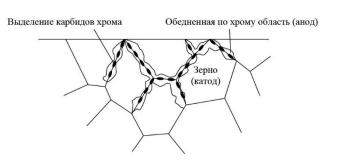
Хром ↑ способность сталей к термическому упрочнению, стойкость к коррозии и окислению, обеспечивает повышение прочности при повышенных температурах, повышает сопротивление абразивному износу высокоуглеродистых сталей.

Хромистые стали обладают повышенной стойкостью как к электрохимической (низкотемпературной), так и к химической (высокотемпературной) коррозии.

В средах, содержащих электрокоррозионная стойкость лит, объясняется высокой склонностью к пассивации. При содержании Ст 11÷12% более И И невысоком содержании С пассивирующие слои - тонкие пленки, состоящие главным образом из Cr₂O₃. Сталь подобно Cr приобретает способность самопассивации.



Хромсодержащие стали


Основной недостаток – неустойчивость к коррозии в хлорированных средах: склонны к коррозионному растрескиванию и точечной коррозии в средах, содержащих ионы хлора.

Хромоникелевые стали: недостатки – трудная свариваемость, невысокая прочность, рост зерна во время нагревания, межкристаллитная коррозия, хрупкость при нагревании от 400°C до 500°C.

Межкристаллитная коррозия обусловлена тем, что часть хрома около границ зерна взаимодействует с углеродом и образует карбиды.

Lawrynowicz, Z. Diagnostics of the effect of prior cold deformation and aging time on intergranular corrosion resistance in case of austenitic stainless steel: proceedings

Азотирование поверхности стали

Азотирование поверхности стали – вид химико-термической обработки, целью которого является насыщение поверхности азотом для улучшения функциональных свойств:

– ↑ твердости и износостойкости;

 $2 \text{ NH}_3 \rightarrow 2 \text{ N} + 3\text{H}_2$

- ↑ коррозионной стойкости.

Способ азотиров ания	Расплав солей	Газ	Плазма
Среда	Цианат/ Цианит	$\mathrm{NH_3}$ $\mathrm{NH_3} + \mathrm{CO_2}$	$N_2 + H_2$ $N_2 + H_2 + CH_4$
Температ ура, °С	560 - 580	510 - 540 550 - 620	300 – 590 500 – 590
Длительн ость, ч	0,2 - 3	20 – 120 1,5 – 6	5 – 60 0,2 – 6
Результат	Карбонитрид	Нитрид Карбонитрид	Нитрид Карбонитрид

Атомарный азот адсорбируется поверхностью и диффундирует вглубь обрабатываемого изделия.

Азотирование поверхности стали

Глубина и поверхностная твердость азотированного слоя зависят от ряда факторов: t° азотирования, t азотирования и состав азотируемой стали.

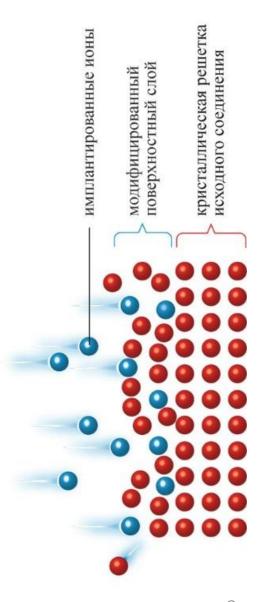
Для повышения поверхностной твердости и износостойкости процесс проводят при температуре $500 \div 560$ °C в течение $24 \div 90$ ч. Содержание азота в поверхностном слое составляет $10 \div 12\%$. толщина слоя $(h) - 0,3 \div 0,6$ мм. На поверхности получают твердость около 1000 HV. Охлаждение проводят вместе с печью в потоке аммиака.

Для азотирования в этом случае используют стали, содержащие *хром*, алюминий, молибден, титан. Нитриды этих элементов дисперсны и обладают высокой твердостью и термической устойчивостью.

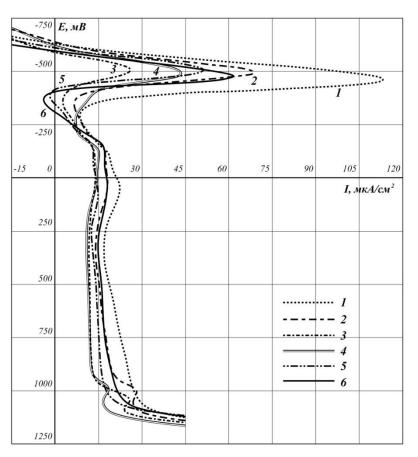
Антикоррозионное азотирование проводят и для легированных, и для углеродистых сталей. Температура проведения азотирования – $650\div700^{\circ}$ С, продолжительность процесса - 10 ч. На поверхности образуется слой ε -фазы (твердый раствор на основе нитрида железа Fe_3 N, имеющий гексагональную решетку) толщиной $0,01\div0,03$ мм. который обладает высокой стойкостью против коррозии.

Азотирование поверхности стали

Значительное сокращение времени азотирования достигается при ионном азотировании. Происходит ионизация азотосодержащего газа, и ионы, бомбардируя поверхность катода, нагревают его до температуры насыщения. Катодное распыление осуществляется в течение 5÷60 мин. при напряжении 1100÷1400 В и давлении 0,1÷0,2 мм рт.ст., рабочее напряжение 400÷1100 В, продолжительность процесса до 24 часов.

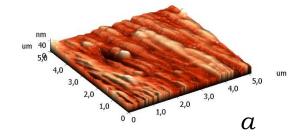

ООО "Ионные Технологии"

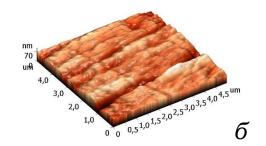
Азотирование высокоэнергетическими методами

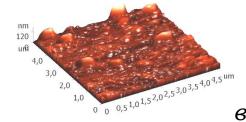

Развитие техники технологии И имплантации различных ионов в поверхность Ме материалов с целью изменения состава и свойств их поверхностных слоев [1 – 3] привело к использованию этого метода для ↑ коррозионной стойкости Ме и сплавов работах обзорных ХИТУНРМОПУ выше отмечена неоднозначность влияния имплантации коррозионную стойкость легированных сталей, что часто связано с взаимодействием легирующих компонентов (Cr, Ni) с имплантируемыми частицами → к ЭХ гетерогенности поверхности и ↓ коррозионной стойкости.

Известный интерес представляет имплантация азота [6 – 11], вызванный тем, что в литературе неоднократно отмечалось положительное влияние нитридных фаз на суммарное ↓ анодных токов при поляризации различных сталей, а также достаточно высокая коррозионная стойкость индивидуальных кристаллических нитридов. Одновременно было установлено, что нитридная фаза должна быть достаточно сплошной и бездефектной. Указанные выше высокотемпературные методы насыщения поверхности N не могут гарантировать сплошности и бездефектности поверхностного слоя.

В этом направлении более перспективны и экономичны методы ионной имплантации азота.

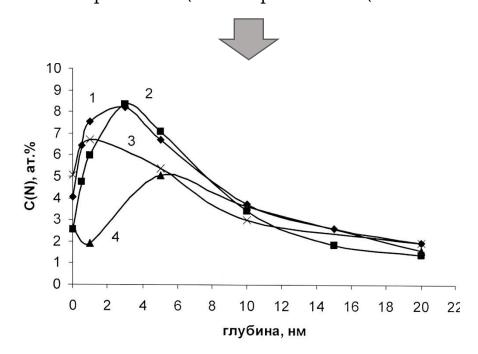



Азотирование высокоэнергетическими методами

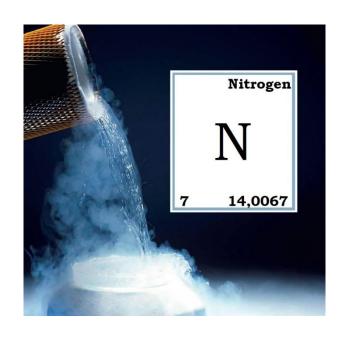


Потенциодинамические кривые образцов армко-железа в боратном буферном растворе: 1 – образец в исходном состоянии; образцы, облученные азотом с параметрами: 2 – 10 кэВ/5·10¹⁶ ион/см²; 3 – 30 кэВ/5·10¹⁶ ион/см²; 4 – 30 кэВ/10¹⁷ ион/см²; 5 – 30 кэВ/5·10¹⁷ ион/см²; 6 – с предобработкой аргоном 3 кэВ/5·10¹⁶ ион/см² и облученный азотом с параметрами 30 кэВ/5·10¹⁷ ион/см².

АСМ-изображения поверхности армко-железа: a – исходная поверхность; δ – облучение в режиме 30 кэВ/ $5\cdot10^{16}$ ион/см²; ϵ – облучение в режиме 30 кэВ/ 10^{17} ион/см².



Азотирование высокоэнергетическими методами



Профили распределения имплантированного азота (C, ат%) с предобработкой аргоном в режимах: $1-30~{\rm k}{\rm s}{\rm B}/10^{17}~{\rm uoh/cm^2}, 2-3~{\rm k}{\rm s}{\rm B}/10^{17}~{\rm uoh/cm^2}, 3-30$ кэ ${\rm B}/10^{18}~{\rm uoh/cm^2}$ (Ar) + $30~{\rm k}{\rm s}{\rm B}/5\cdot10^{17}~{\rm uoh/cm^2}$ (N). $1'-{\rm umn}$ лантация азота в режиме $30~{\rm k}{\rm s}{\rm B}/10^{17}~{\rm uoh/cm^2}$ в неотожженную мишень без предварительной обработки аргоном.

Распределение азота в поверхностных слоях образцов железа серии 3 после электрохимических испытаний: 1 – выдержка в ББР в течение 1 часа; 2 – после катодной поляризации; 3 – выдержка при потенциале активного анодного растворения; 4 – после снятия поляризационной кривой и выдержки при потенциале перепассивации.

Выводы

Внедрение в поверхность сталей азота приводит к формирования нитридов и карбонитридов. Наличие в стали легирующих элементов способствует образованию сложных соединений, характеризующих их итоговую высокую коррозионную стойкость, связанную со строением и структурой.