Опыт применения Scilab

в курсе «Цифровая обработка сигналов» кафедра ВМСС ИВТИ

Читается в 4 семестре: 16 лекций, 8 лаб. работ (4 ч.)

Михалин С.Н.

Цели применения ПО типа Matlab

- 1) Решение прикладных задач курса «Цифровая обработка сигналов», с целью поддержки его теоретической части
- 2) Приобретение навыков для решения задач других курсов
- 3) Ознакомление с современным ПО (ориентируясь на крупные компании)

Уровень «сложности» изучения Matlab в ЦОС:

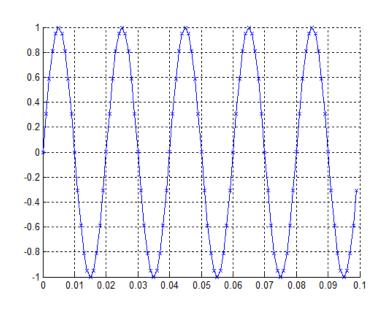
- 1) Программная среда
 - Элементарные матричные операции
 - Реализация алгоритмов ЦОС (свертка, КФ, ДПФ, построение АЧХ)
 - Построение 2D-графиков
- 2) Визуальная среда (simulink)
 - Элементарные блоки (генераторы, осциллограф, лин. операции)

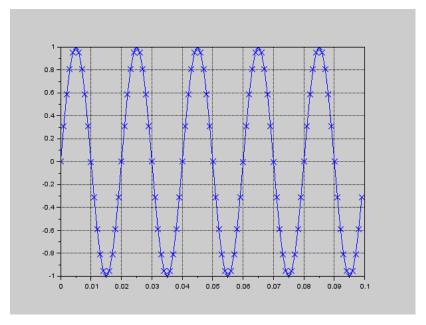
Scilab vs Matlab

Scilab	Matlab
Свободное скачивание дистрибутива с сайта www.scilab.org	Покупка лицензии
«Ограничений» в работе нет.	(привязка к ПК)
Scilab is released under the terms of the GNU General Public License (GPL)	
Встроенный Xcos	Покупка лицензии Simulink
Встроенный Help на русском языке	Встроенный Help на английском языке
Место на диске (6.1.1): ~600 Мб	Место на диске: ~10 Гб
Обучающие курсы, примеры, community	
Возможности и синтаксис примерно одинаковы	

Scilab

Формальные возможности:

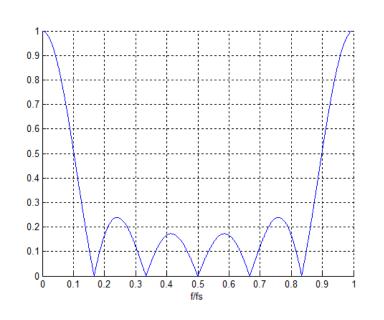

- 1) 2D- и 3D-графики, анимация
- 2) Линейная алгебра, разреженные матрицы
- 3) Полиномиальные и рациональные функции
- 4) Интерполяция, аппроксимация
- 5) Симуляция: решение ОДУ и ДУ
- 6) Xcos: гибрид системы моделирования динамических систем и симуляции
- 7) Дифференциальные и не дифференциальные оптимизации
- 8) Обработка сигналов
- 9) Параллельная работа
- 10) Статистика
- 11) Работа с компьютерной алгеброй
- 12) Интерфейс к Fortran, Tcl/Tk, C, C++, Java, LabVIEW

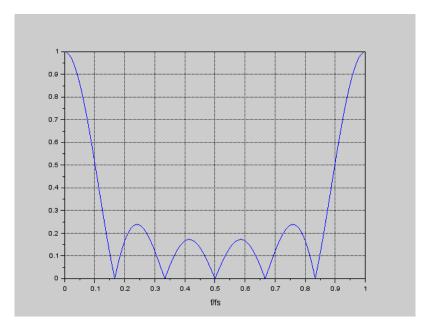

1. Поиск максимума в массиве		
Matlab	Scilab	
clear;	clear	
a=[1 3 8.1 7 2.5 4 6 2 0];	a=[1 3 8.1 7 2.5 4 6 2 0]	
max1=a(1); %нумерация	max1=a(1) //нумерация элементов	
элементов массива с единицы	массива с единицы	
for i=2:length(a)	for i=2:length(a)	
if (a(i)>max1)	if(a(i)>max1)	
max1=a(i);	$\max 1=a(i)$	
end; %для условия	end //для условия	
end; %для for	end //для for	
Время выполнения кода (усреднение на 1000 раз): tic/toc		
1.0 мкс 18,4 мкс		

2. Нарисовать дискретный синусоидальный сигнал		
Matlab	Scilab	
clear;	clear	
N=100;	N=100	
n=(0:N-1);	n=(0:N-1)	
Fs=1000;	Fs=1000	
F=50;	F=50	
x=sin(2*pi*F*n/Fs);	x=sin(2*%pi*F*n/Fs)	
figure;	figure	
grid on;	xgrid	
hold on;	plot(n/Fs,x,'-x')	
plot(n/Fs,x,'-x');		

2. Нарисовать дискретный синусоидальный сигнал

Matlab Scilab

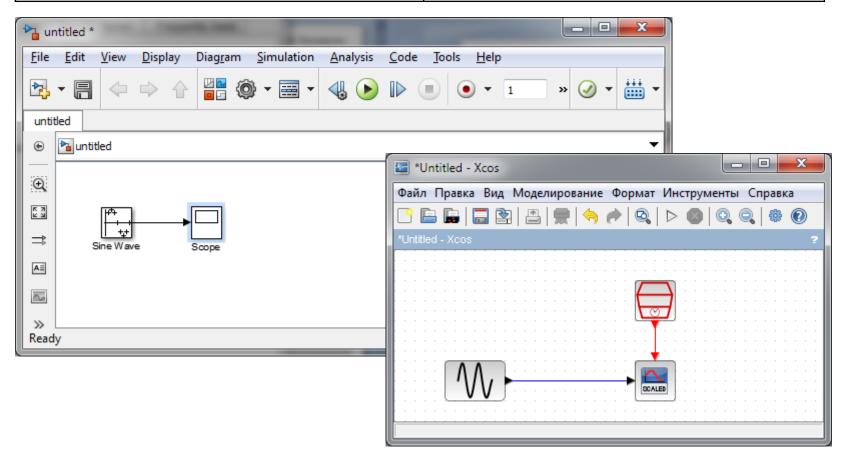

3. Вычислить АЧХ усредняющего фильтра		
Matlab	Scilab	
clear;	clear	
h=[1 1 1 1 1 1]/6; %импульсная хар-ка	h=[1 1 1 1 1 1]/6 //имп. хар-ка	
[H, f]=freqz(h,1,2000,'whole',1);		
figure;	[H,f] (freqz)h,1,2000,'whole',1)	
grid on;	figure	
hold on;	plot(f,abs(H),'b')	
plot(f,abs(H),'b');	xlabel('f/fs')	
xlabel('f/fs');		


$$H(z) = \sum_{n=0}^{N-1} h(n) z^{-n}$$

$$z = e^{j\omega t_s}$$

Замена freqz

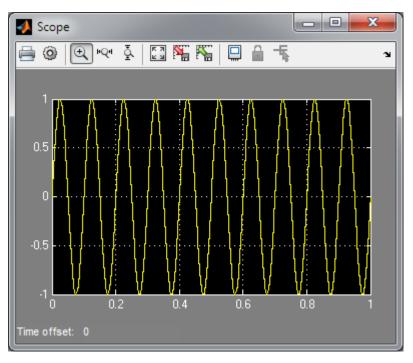
3. Вычислить АЧХ усредняющего фильтра		
Matlab		Scilab

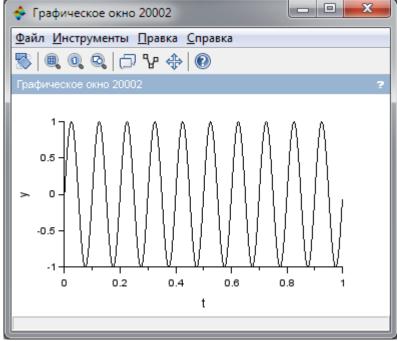


АЧХ усредняющего фильтра 5-го порядка

Scilab vs Matlab. Визуальная среда

Создать и отобразить дискретный сигнал (10 Гц, Fs=1 кГц) Matlab Scilab


Scilab vs Matlab. Визуальная среда


Создать и отобразить дискретный сигнал (10 Гц, Fs=1 кГц) Scilab Matlab Parameters 🌉 Ввод значений Sine type: Sample based Установите параметры блока GENSIN_f Time (t): Use simulation time Генератор синусоидальных колебаний Amplitude: Amplitude Генератор Частота (рад/с) 20*%pi Bias: Фаза (рад) 0 Samples per period: OK. Отменить 100 Number of offset samples: 🔀 Ввод значений Sample time: Установите параметры блока SampleCLK 0.001 Sample time 0.001 Interpret vector parameters as 1-D Такты Offset 0 Help OK Cancel Apply OK Отменить

Scilab vs Matlab. Визуальная среда

Создать и отобразить дискретный сигнал (10 Гц, Fs=1 кГц)

Matlab Scilab

Scilab vs Matlab. Выводы

Программная часть		
Matlab	Scilab	
Почти эквивалентны, совместимые		
	- Менее богатая функциями	
	- Более медленная	

Визуальная часть		
Matlab		Scilab
Разные, несовместимые		
		- Менее удобный интерфейс