

Лабораторно-практический образовательный комплекс — электромобиль

Докладчик: к.т.н., доцент кафедры «Электротехника и электрооборудование»

Грищенко Александр Геннадьевич

Москва 2025

Исследование системы тягового и энергетического оборудования электромобиля


Цель работы: исследование основных показателей работы системы тягового и энергетического оборудования (СТЭО) реального образца легкового электромобиля. В рамках дисциплины «Электромобили» студенты 4 курса направления 13.03.02 профиля «Электрооборудование автомобилей и электромобили» проводят комплексные исследования.

Задачи работы:

- 1. Изучение состава, особенностей конструкции и характеристик СТЭО легкового электромобиля;
- 2. Изучение принципа получения оперативной технической информации о работе СТЭО;
- 3. Определение основных электрических, механических, электромеханических, мощностных и энергетических характеристик СТЭО электромобиля;
- 4. Анализ полученных данных и определение базовых эксплуатационных показателей электромобиля.

Особое внимание уделяется определению электрических, механических, энергетических и мощностных параметров, а также анализу эксплуатационных показателей электромобиля.

Работа начинается с изучения конструкции и характеристик системы тягового и энергетического оборудования. В таблице 1 представлены общие параметры СТЭО и трансмиссии электромобиля, включая технические данные, влияющие на его работу.

Объект исследования и его характеристики

Таблица 1

Основные характеристики СТЭО и трансмиссии электромобиля

	T
ігп, о.е.	4.3
iкп, o.e.	1
р (число пар полюсов ЭДГ)	6
Масса снаряженная, кг (без водителя и пассажиров)	1590
Масса снаряженная, кг (водитель и пассажиры)	1922
Тип шин	235/40ZR18
Динамический радиус колеса r _к	0.309
Cx, o.e.	0.3
Запас энергии батареи макс. Wб, кВтч	32
Ибмакс , В	403.2
Ибмин, В	288
Ибном , В	360
Мощность потребления собственных нужд (ППН), Вт*	600

Понимание этих характеристик важно для дальнейшего анализа и оценки эффективности системы в различных режимах эксплуатации.

Лабораторная работа проводится с использованием различных моделей электромобилей, в том числе на электромобиле созданном на кафедре на базе автомобиля Mazda Rx8 или на серийных Москвич 3е и Лада e-Largus.

Рисунок 1 – Объект исследования электромобиль на базе Mazda Rx8

Схема взаимосвязи преподавателя и обучающегося

Методы сбора технической информации

Для оценки работы СТЭО применяются сбор технической информации посредством контрольно-измерительного оборудования, установленного на экспериментальном образце. Это позволяет отслеживать параметры в реальном времени и анализировать динамику работы оборудования. На рисунке 2 представлен интерфейс приложения.

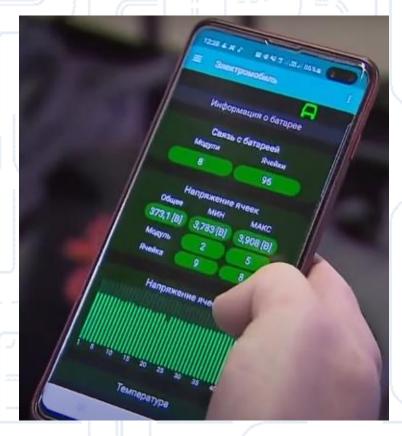


Рисунок 2 — Мобильное приложение для электромобиля

Назначение:

Организация цифрового обмена данными между компонентами системы тягового и энергетического оборудования электромобиля с целью:

- управления работой бортовых систем и устройств;
- реализации функциональной взаимосвязи различных устройств;
- согласования работы штатного оборудования с дополнительным;
- контроля, регистрации и вывода на внешнее устройство основных показателей работы электрооборудования.

Характеристики и функциональные особенности:

Интерфейс: CAN, Ethernet.

Беспроводное подключение мобильных устройств.

Программируемые функции.

Вывод информации о состоянии и показателях работы оборудования на внешний дисплей.

Возможность удаленного контроля и управления бортовыми устройствами через приложение для Android/iOS.

Порядок проведения лабораторной работы

Лабораторная работа включает изучение состава и характеристик СТЭО на примере объекта исследования, а также серию экспериментальных исследований. Контрольные заезды проводятся по заранее определенному маршруту в двух циклах, имитирующих городское движение: умеренное (личный заезд обучающегося) и интенсивное (демонстрационный заезд лаборанта/преподавателя).

Изучение СТЭО

Ознакомление с составом, конструкцией и характеристиками системы тягового и энергетического оборудования электромобиля.

Экспериментальные заезды

Проведение контрольных заездов в двух режимах: умеренное движение (личный заезд) и интенсивное движение (демонстрационный заезд).

Сбор данных

Измерение и регистрация ключевых показателей работы СТЭО в ходе заездов.

Анализ результатов

Обработка полученных данных и определение эксплуатационных показателей электромобиля.

Условия и ограничения проведения исследований

Для обеспечения безопасности и точности результатов, к управлению транспортным средством допускаются только лица с действующим водительским удостоверением и прошедшие медицинское обследование. Эксперименты проводятся на закрытой, специально оборудованной площадке. На объекте исследования программно (в приложении) устанавливается ограничение скорости.

Все работы выполняются с соблюдением необходимых мер безопасности для исключения травмирования обучающихся и персонала, а также порчи имущества. Общие требования к условиям, обеспечению и проведению работы, а также требования безопасности подробно изложены в Программе и методике выполнения лабораторной работы ПМ.ЛРЭ.04.

Допуск к управлению

Водительское удостоверение и медицинский допуск обязательны.

Место проведения

Закрытая, специально оборудованная площадка.

Ограничение скорости

Программно установленное ограничение скорости на электромобиле.

Измеряемые показатели работы СТЭО

В ходе лабораторной работы регистрируются различные электрические и механические параметры СТЭО электромобиля. Эти данные позволяют получить полную картину работы системы и оценить её эффективность. Среди измеряемых показателей — время, момент на валу ЭДГ, напряжение и токи тяговой батареи, частота вращения ротора, а также температуры ключевых компонентов.

Электрические параметры:

- •Напряжение тяговой аккумуляторной батареи [В]
- •Входной постоянный ток тягового инвертора [А]
- •Линейное напряжение обмоток статора ЭДГ [В]
- •Фазный ток заданный/фактический [А]

Механические и температурные параметры:

- •Момент на валу ЭДГ фактический/заданный [Нм]
- •Частота вращения ротора ЭДГ [мин-1]
- •Температура IGBТ-модуля инвертора [°С]
- •Температура ЭДГ [°С]

Форма представления результатов измерения и регистрации основных показателей работы СТЭО

Таблица 2

Результаты измерений основных показателей работы СТЭО

Время, с	Момент факт., Нм	Момент задан., Нм	Напряжение ТАБ, В	Входной ток инвертора, А	Частота вращения ротора, мин-1	Линейное напряжение ЭДГ ампл., В	Фазный ток заданный ампл., А	Фазный ток фактич., А	Температу- ра IGBT- модуля инвертора, °C	Температура ЭДГ, °С]
											J

Анализ получаемых результатов

Задание включает определение и построение различных зависимостей по результатам измерений, а также расчет ключевых эксплуатационных показателей. Необходимо проанализировать данные для личного заезда и цикла интенсивного движения, а также составить сводные таблицы результатов.

1. Построение характеристик

Определение зависимостей скорости, ускорения, частоты вращения ротора ЭДГ, моментов, токов, напряжений и температур от времени.

2. Определение показателей

Расчет расхода электроэнергии, пройденного расстояния, удельного расхода энергии, теоретического запаса хода и интегрального КПД СТЭО.

3. Сводные таблицы

Составление таблиц результатов по личному заезду, циклу интенсивного движения, а также обобщенных параметров по всем заездам групп.

Результаты расчетов по личному заезду и циклу интенсивного движения представляются в табличной форме, отражая ключевые параметры работы СТЭО. Также фиксируются достигнутые максимальные и минимальные значения показателей работы системы и транспортного средства, что позволяет оценить экстремальные режимы эксплуатации.

Ключевые расчетные зависимости

Для анализа тягово-энергетических характеристик электромобиля используются основные расчетные зависимости. Они позволяют определить мощность на валу ТЭД, мощность заряда/разряда тяговой батареи, полезную энергию, расход электрической энергии с учетом и без учета рекуперации, а также интегральный КПД силовой установки. Формулы являются основой для глубокого понимания работы электромобиля.

Мощность на валу тягового электродвигателя (ТЭД)

$$P_2 = \frac{M_{T \ni \mathcal{I}} \cdot n_2}{9550}$$
, Вт, (1) где $M_{T \ni \mathcal{I}}$ – зависимость момента на валу ТЭД от времени, Н·м; n_2 – зависимость частоты вращения ротора ТЭД от времени в цикле движения, мин-1

Мощность на валу тягового электродвигателя (ТЭД)

$$P_{\mathcal{B}} = U_{\mathcal{G}} \cdot I_{\mathcal{G}}$$
 , Вт, (2) где $U_{\mathcal{G}}$ — зависимость напряжения тяговой аккумуляторной батареи от времени в цикле движения, В; $I_{\mathcal{G}}$ — зависимость тока тяговой аккумуляторной батареи от времени в цикле движения, А. Положительные значения $P_{\mathcal{G}}$ соответствуют режиму разряда тяговой аккумуляторной батареи, отрицательные — заряду в процессе электрического (генераторного) торможения.

Полезная (механическая) энергия, реализованная силовой установкой

$$W_{Mex} = \int_{0}^{T} P_2 \cdot dt$$
, Вт·ч, (3) где T – время движения (цикла), ч; t – время, ч.

Ключевые расчетные зависимости

Общий расход электрической энергии тяговой аккумуляторной батареи

С учетом рекуперации

$$W_{\scriptscriptstyle B} = \int_{\scriptscriptstyle 0}^{\scriptscriptstyle T} P_{\scriptscriptstyle B.} \cdot dt \,,\, \text{BT·ч, (4)}$$

$$W_{E} = \int_{0}^{T} P_{E.} \cdot dt$$
, BT·ч, (4) $W_{E.p} = \int_{0}^{T} P_{E.p} \cdot dt$, BT·ч, (5)

где $P_{B,p}$ — зависимость мощности разряда тяговой аккумуляторной батареи от времени в цикле движения, Вт. Мощность разряда представляет собой зависимость положительных значений $P_{\mathcal{S}}$ от времени в цикле движения.

Энергия рекуперации

$$W_{B.3} = \int_{0}^{T} P_{B.3} \cdot dt$$
, BT·ч, (6)

где $P_{E,3}$ — зависимость мощности заряда тяговой аккумуляторной батареи от времени в цикле движения, Вт. Мощность заряда представляет собой зависимость отрицательных значений P_{E} от времени в цикле движения.

Интегральный КПД силовой установки

$$\eta = \frac{W_{Mex}}{W_{E}} \cdot 100, \% (7)$$

Ключевые расчетные зависимости

Удельный расход электрической энергии тяговой аккумуляторной батареи

$$W_{y\partial} = \frac{W_{B}}{L_{II}}$$
, Вт·ч/км, (8) где L_{II} – расстояние, преодолеваемое в цикле движения, км, рассчитываемое как интеграл скорости движения по времени:

$$L_{II} = \int_{0}^{T} V \cdot dt$$
, км, (9) где V – зависимость скорости движения электромобиля от времени, км/ч.

Скорость электромобиля определяется по фактической частоте вращения ротора ТЭД с учетом радиуса колеса R_{κ} (м) и передаточного числа механической трансмиссии (главной передачи) $i_{\Gamma\Pi}$

$$V = \frac{3, 6 \cdot \pi \cdot R_{\kappa} \cdot n_2}{30 \cdot i_{\Gamma\Pi}}, \text{ км/ч, (10)}$$

Средняя скорость движения электромобиля в цикле

Ускорение и замедление транспортного средства

$$V_{cp} = \frac{L_{II}}{T}$$
, км/ч (11) $a = \frac{dV}{dt}$, м/с (12)

Теоретический запас хода электромобиля в цикле движения определяется согласно выражению

$$L = \frac{W_{E.макс}}{W_{y\partial}}$$
, км (13) где $W_{E.макc}$ — максимальный запас электроэнергии тяговой аккумуляторной батареи электромобиля (для Rx8 - $W_{E.макc}$ = 32000 Вт·ч).

12

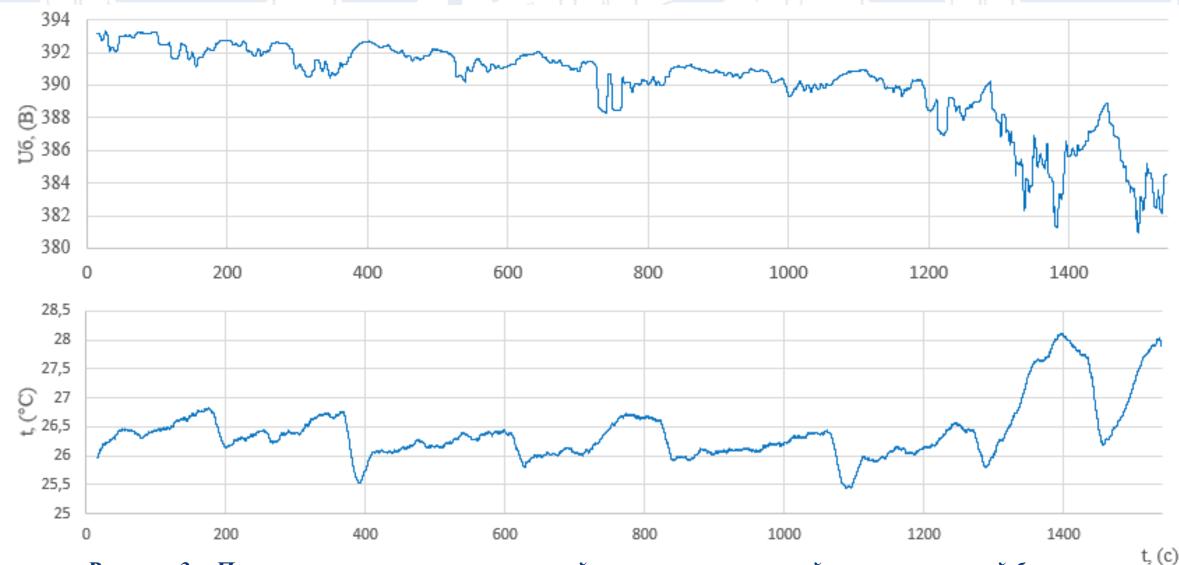


Рисунок 3 — Пример получаемых зависимостей напряжения тяговой аккумуляторной батареи и температуры инвертора от времени

3

Пример получаемых результатов

В результате выполнения расчетов формируются таблицы 3 и 4, которые включают расчет расхода энергии на пробег, уровень потерь энергии, запас хода при различных условиях эксплуатации, результаты оценки динамических характеристик, максимальной скорости, времени разгона и других эксплуатационных параметров. Таблицы служат основой для анализа работы СТЭО.

Таблица 3 Результаты расчетов по 8 циклам интенсивного движения

Nº	Wp (Вт*ч)	S (M)	g (Вт*ч/км)	L (M)	η (%)
1	191.17	557.44	342.94	93.31	77.7
2	202.32	546.84	369.99	86.49	79.6
3	174.54	553.27	315.48	101.43	72.5
4	238.60	545.79	437.16	73.20	80.0
5	172.72	557.55	309.78	103.30	72.6
6	232.72	548.30	424.43	75.39	79.2
7	505.89	754.70	670.32	47.74	87.8
8	350.25	473.48	739.73	43.26	88.5

Таблица 4 Достигнутые максимальные и минимальные значения показателей работы СТЭО и транспортного средства

\ 1	1	1/ (1 1/1	_'
	Личный заезд	Интенсивный 1 круг	
Wp (Вт)	174,54	505,89	Ī
S, (M)	553,27	754,70	
g, (Вт/ч*км)	315,48	670,32	
L, (M)	101,43	47,74	
η, (%)	72,55	87,82	
V, (m/c)	8,47	13,54	
а, (м/c²)	16,84	18,16	ı,
n, (мин ⁻¹)	1126,00	1799,00	
F, (Гц)	112,60	179,90	į
М заданный, (Н*м)	320,90	640,90	
М фактический, (Н*м)	325,50	681,50	-
I входной, (A)	93,50	264,90	
Iппн <i>,</i> (A)	1,57	1,67	2
(A), qI	95,07	266,55	
Рр ,(кВт)	36,36	96,97	
Рсу, (кВт)	34,13	102,51	
I фазный заданный, (A)	322,40	676,10	١
I фазный фактический, (A)	322,0	676,10	
Т. IGBT-модуля фазы А, (С°)	20,70	24,00	ŀ
t ТЭД, (C°)	29,20	30,00	Į,
Uab макс, (B)	393,90	391.6	
Uab мин, (B)	382,3	360.1	

Пример получаемых в результате анализа зависимостей

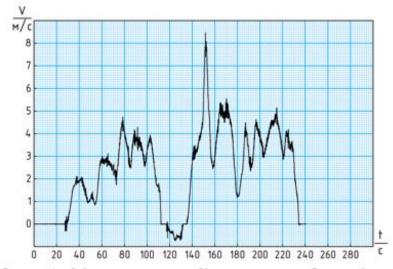


Рисунок 1 - Зависимость скорости движения электромобиля от времени

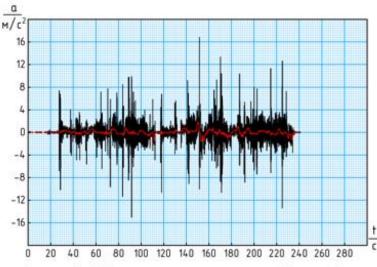
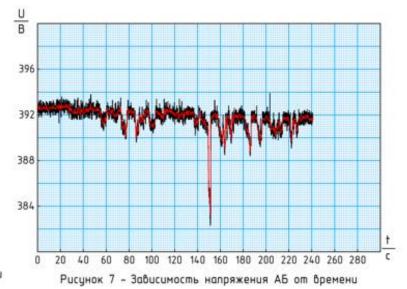
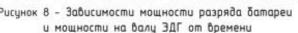




Рисунок 2 - Зависимость ускорения электромобиля от времени

кВm мощность на валу ЭДГ 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 Рисунок 8 - Забисимости мощности разряда батареи

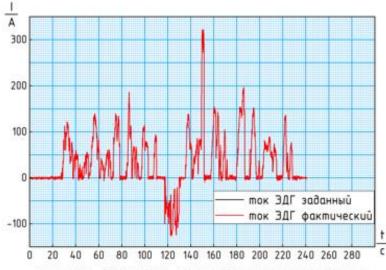


Рисунок 9 - Зависимость амплитудного значения заданного и фактического тока ЭДГ от времени

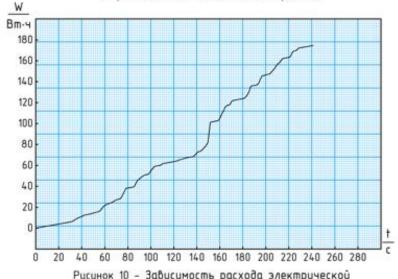


Рисунок 10 - Зависимость расхода электрической энергии батареи от времени

Выводы по работе и формируемые компетенции

Формируемые компетенции:

- ПК-1.1. Выполняет сбор и анализ данных для проектирования, составляет конкурентоспособные варианты технических решений
- ПК-1.2. Обосновывает выбор целесообразного решения
- ПК-1.3. Подготавливает разделы предпроектной документации на основе типовых технических решений
- ПК-1.4. Демонстрирует понимание взаимосвязи задач проектирования и эксплуатации
- ПК-4.1. Определяет технико-экономические параметры обоснования проектов профессиональной деятельности

В ходе выполнения исследования системы тягового и энергетического оборудования (СТЭО) реального образца легкового электромобиля были достигнуты следующие основные результаты:

- 1.Изучена конструкция и состав СТЭО, что позволило понять особенности его устройства, включая электродвигатель, аккумуляторные батареи, системы управления и сбора информации. Были выявлены ключевые технические параметры, влияющие на эффективность и надежность работы системы.
- 2.Получены данные о принципах получения оперативной технической информации о работе СТЭО, что включает использование датчиков, систем мониторинга и диагностического оборудования для контроля электрических и механических параметров в реальном времени.
- 3. Проведены измерения и расчет основных характеристик электромобиля: электрической мощности, механической мощности, энергетической эффективности, а также динамических показателей (ускорение, максимальная скорость). Это позволило определить эксплуатационные показатели электромобиля в различных режимах работы.
- 4.Произведен анализ полученных данных, что дало возможность оценить базовые показатели эксплуатации электромобиля: запас хода, энергоэффективность, уровень потерь энергии и надежность системы.

Общим выводом является то, что системный подход к изучению СТЭО позволяет не только оценить текущие параметры электромобиля, но и выявить направления для повышения его эффективности и надежности. Полученные результаты могут служить основой для дальнейших исследований по оптимизации конструкции и эксплуатации электромобилей.

